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Choosing the Best of the Current Crop

By

Stephen M. Samuels and Gregory Campbell

1. INTRODUCTION AND SUMMARY

This paper presents a new version of the so-called "best choice"

problem - that is, the problem of sequential selection of the best one

of a sequence of n rankable items which appear in random order.

Two standard versions of the problem are the "no-information"

problem, in which only the successive relative ranks of the items can

be observed, and the "full information" problem in which observations

are successive values in a random sample from a known continuous dis-

tribution. Optimal stopping rules and their probabilities of success

(i.e. choosing the best) are contained in Gilbert and Mosteller (1966).

As n - - the optimal probabilities are asymptotically e"  .37 and

v* s .58 in the two problems.

These two versions are not only inherently oversimplified models

for selection, but may be criticized as being in one case too constrain-

ing (based only on relative ranks) and in the other too demanding (the

distribution must be known precisely).

A number of intermediate versions have been proposed, which

feature some form of partial prior knowledge of the distribution.

Petruccelli (1978) showed that if the distribution is known to be normal,

then the maximin success probability is asymptotically v*; while if it

is uniform on an interval of known length the limiting probability is

strictly between e"1 and v*. However for the class of all uniform

distributions, Samuels (1979) showed that the maximin stopping rule is

based only on relative ranks; hence the limiting success probability

is e"1 . The same limit applies to a closely related Bayesian problem

of Stewart (1978). Giving the end-points (ab) of the uniform distribution
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a conjugate prior density of the form

f(a,b) = m(m-l)(0-a)m'/(b-a)m+l  -<a<a<a<b<w

he found that when the risk is 1 - P(item selected is largest in the

sample and > 8) the Bayes stopping rule is based only on relative ranks

with respect to a as well as to preceding observations.

Campbell (1977) placed a Dirichlet process prior on the space of

all distributions. In the situation in which the values themselves

are observed, this leads to strategies and success probabilities that

depend only on the nonatomic measure of the process. In the event that

only relative ranks are available, Campbell (1978) showed the optimal

strategy depends only on the mass of the measure. In that the process

selects only discrete distributions, ties are inevitable and the mass

of the measure regulates these. The improvement over the "no-information"

probability vanishes as the mass tends to infinity.

It should be noted that to achieve the "full information" success

probability it suffices to observe only {F(Xi)) where F is the under-

lying continuous distribution. For large i, F(Xi) is well approximated

by iIY where Yi is the rank of Xi among X, ... , Xi. This suggests

representing prior information in the form of a preliminary or train-

ing sample of, say, size m, and observations as relative ranks with

respect to the entire training sample as well as to predecessors in the

current sample. This is the version presented here.

As an application of this version one may consider this year's

Ph.D.'s in Statistics who seek academic employment as the current crop,

and those in the interviewer's previous years of experience as the

training sample. That there is some oversimplification here is readily

conceded.

. wI ]



3

The form of optimal stopping rules for this problem turns out to

be particularly simple; their parameters depend on m (the training

sample size) and n (the size of the current crop) only through m + n.

Specifically, there are integers {Sk*(m+n)} non-decreasing in k such

that the optimal (m,n)-policy is to stop at i > m if the i-th item is

the best so far of the current crop and k-th best of all i, provided

that i > Sk*(m+n).

Not only are those parameters readily computable from (2.6) and (2.8)

and closely approximated from (2.12), but also the limits Sk* of

Sk*(m+n)/(m+n) exist as m+n-)o, are themselves computable from (3.14) and

can serve as asymptotically optimal approximations to the optimal (m,n)

parameters. (See Table 2).

Although the optimal success probabilities P*(m,n) can be obtained

from the algorithm given by (2.5) and (2.6) their true form is best

revealed by the following asymptotic results: For each fixed n, as

m increases from 0 to -, P*(m,n) increases from the "no-information"

optimal success probability to the "full-information" optimal value for

sample size n, which is denoted by v n* (Theorem 4.1). And for

m/(m+n) - t, as m and n become infinite, P*(m,n) - p*(t), the function

p*(.) being given not only implicitly as the limit of solutions to a

system of piece-wise differential equations (3.7) but explicitly in

Theorem 3.1 from which not only is numerical evaulation a simple

matter (see Table 4) but also limt.1p*(t) = v* can be proved (Theorem 3.3).

The sk*Is and p*(.) are introduced in section 3 as, respectively, the

parameters of the optimal policies and the optimal success probabilities

for an infinite version of the problem in which the arrival times of the

JI
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best item, second best, etc. are independent random variables, each

uniform on (0,1). This model provides, among other things, a

convenient vehicle for showing in Theorem 4.2 that the difference

between P*(m,n) and p*(m/(m+n)) is of an order no bigger than

(m+n)-1 log(m+n). (Numerical evidence - see Table 4 - suggests that

the actual order is (m+n)' .)

Since we know of no way to deduce the explicit form of p*(.)

directly from the differential equations (3.7), it is in fact obtained

as a special case of the explicit formula for the success probability

of any "plausible" stopping rule. The formula is given in Theorem

3.2 which is proved in Section 5. This formula also facilitates

evaluation of suboptimal rules of simplified form analagous to ones

considered in Gilbert and Mosteller (1966), though we have not done so.

2. THE FINITE PROBLEM

The problem of "choosing the best of the current crop with

maximal probability" may be formulated as follows:

Let X1, ..., X , m+1  ., Xm+n be a random permutation of

{1, 2, ..., m+nl; i.e. all (m+n)! permutations are equally likely; and

let YI, Y2, ...9 Ym+n denote the corresponding sequence of relative

ranks; i.e. Y = j if Xi is the j-th smallest of (X1, ..., X11. Let

= (m,n) be the class of stopping rules T based on the Y 's and P*(m,n)

be the maximal attainable probability of selecting the smallest of

Xm+,I ...,* Xm+n; i.e.,

(2.1) P*(m,n) - maxE X P(Xr a min {Xt: m<i<m+nl).

JL+
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(We write "max" rather than "sup" because standard results in optimal

stopping, as presented in Chow, Robbins, and Siegmund (1971), insure

that the supremum is attained.) The object is to evaluate P*(m,n) and

find the optimal stopping rule which attains this value.

As in other problems of optimal stopping based on relative ranks,

the distributional properties of the Xi s are exploited, notably the

fact that the Y,'s are independent with each Yi uniformly distributed

on 1, 2, ..., il. This leads to two expressions which greatly simplify

the form of the standard backward induction algorithm for the optimal

rule and its expected payoff, as described in Chow, Robbins, and

Siegmond (1971). First the conditional probability of success for

selecting the i-th arrival satisfies

(2.2) P(X =i m X M<jm+n} IY1  ... YI)

i m+n

kl j=i+l - {Yi=min{Yr:m<r<iJ=kl

i
=k [(i)k/(m+n)k] I{Yi=min{Y r:m<r<}=k};_ m<i<m+n

where (x)k x(x-l) ... (x-k+l).

Second, defining

(2.3) Pk*(l;m+n) = max,>t P(XTk & X = mn (X: i<jm+n)) l<k<t<m+n,

the optimal success probability with stopping ranks which don't select

any of the first i arrivals satisfies

(2.4) max> i P(X - min {Xj: m<Jn+nfl YI, ""I YI)

m+l

kl Pk*('; m+n) l(min(Y m<J<i I k) m<it+n.
k-l j.
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It can then be shown that

m+l
(2.5) P*(m,n) = (m+l) "1 I max{Pk*(m+l;m+n), (m+l)k/(m+n)k}k=l

m=O, 1, 2, ... ; n=l, 2,

where the Pk*(i, m+n)'s are computed iteratively from

kk(2.6a) Pk*(i-1 ; m+n) = (1-k/i) Pk*(i; re+n)
k i"1 k k

+ 1 I max{P *(i; m+n), (i)./(m+n).} k<i<m+n
j=l J

together with the boundary conditions

(2.6b) Pk*(m+n-l; m+n) = k/(m+n) k=l, 2, ..., m+n-1.

Furthermore the optimal policy is to stop at the first i > m (if any)

for which

Yi = min {YJ: m<j<i}

and

(2.7) P *(i; m+n) i (i) I(m+n)Yil

It Is noteworthy that (2.7) depends on m and n only through

m+n. This means that all of the optimal policies for a given value

of m+n combine the obvious distinct prescriptions, "don't stop if

the present arrival is not best so far of the current crop ...", with

the common criterion, "... and, if it is best so far of the current

crop, and k-th best among all i seen so far, stop If and only if

i E Ik(m+n) c (1, 2, ... ,+n.

t- - - -- - - - - - - - - - - - - -..
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What is the structure of the sets Ik(m+n)? Since the right side

of (2.7) is decreasing in Yi while, by its very definition, the left

side is increasing in YI it follows that

Ik(m+n) : Ik+l(m+n).

To show that each Ik(m+n) is actually an interval of the form

Ik(m+n) = {i: Sk*(m+n) < i < m+nl

-- and, necessarily,

(2.8) Sk*(m+n) = min {i: Pk*(i; m+n) < (i)k/(m+n)k

-- it would suffice to establish that each.Pk*(i; m+n) is decreasing

in i. While this is not true, the change of variables

(2.9) Gk(i; m+n) = Pk*(i; m+n)/[(i)k/(m+n)k]

accomplishes the same end because then (2.6) becomes

(2.10a) Gk(0l-; m+n) = Gk(i; m+n)

- k r(m+nTj)k~j
+(i-k) (- ) k-jJ max{G.(i; m+n), 11j=l "13'k- j J I

k<i<m+n,

(2.10b) Gk(m+n-l; m+n) = k/(m+n-k),

which shows that Gk(k; m+n) is decreasing in I. Since (2.7) is equiva-

lent to

G Y (; m+n) _ 1

this proves
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Proposition 2.1. The optimal stopping rule in the finite

problem is

(2.11) T*(m,n) = min {i>m: Yi = min{Y: m<jci) & > SY .*(m+n)}

= m+n if no such i<m+n

where Sk*(m+n) is v g b (2.8) and is non-decreasing in k.

The parameters {Sk *(m+n)} can easily be computed from (2.6) and

(2.8). Some values are given in Table 2. In addition they may be

estimated from the inequalities

(2.12) (1- k-1 )(m+n) i Sk*(m+n) < (.5)l/k(m+n) + k

the derivation of which is similar to (but somewhat less tidy than)

that for (3.15) in the next section.

3. THE INFINITE PROBLEM

As in Gianini and Samuels (1976),let the arrival times

U1, U2, ..., of the best, second best, etc., be ID, each uniformly

distributed on (0,I). This is motivated by the fact that in the

finite problem not only the ranks of successive arrivals, but also

the arrival positions of the best, second best, etc., form a

random permutation of 01, 2, ..., m+n}.

For each t E (0,1), let Zl(t), Z2(t), ..., be the arrival times

of the best, second best, etc. among those which have arrived by

time t; 3(t) be the a-field generated by {Zi(t): i=l, 2, ...1; and,

noting that s < t implies 3(s) c 3(t), y be the class of all

(possibly defec 4 ve) stopp ng rules T adapted to 13(t): O<t<l) with the

property that -r ' (': .- 1, 2, ...} on the set where T is defined.
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In this framework the problem of interest can be described as

follows. For any t E [O,l) define

(3.1a) Kl(t) = min{j: Uj>tl

(3.1b) K i+l M=_ min{j>K i: U i>t) i=l, 2,..

(so K(t), K2 (t), ... are the (unobservable) absolute ranks of the

best, second best, etc. post-t arrivals), and let

(3.2) Ti(t) UK(t) i=l, 2,

(so Ti(t) is the arrival time of the i-th best post-t arrival). The

object is to evaluate

(3.3) p*(t) a supTE. P(=T1 (t))

and to fid for each t a stopping rule T*(t) which attains this maxi-

mal probability of selecting the best post-t arrival.

To do so it is helpful to consider quantities analagous to the

Pk*(i; m+n)'s in the finite problem, namely

(3.4) pk(t) suPTEJ P(T=Tl(t) & Kl(t)<k) k = 1, 2,

and the associated optimal stopping rules rk*(t). Just as in the

finite problem, p*(t) and T*(t) are obtained from the pk*(t)'s and

k *(t)'s. It is evident from their definition that pk*(t) is

increasing in k; also, for any TEy,

(3.5) P(T T(t)) - P(T=TI(t) & K,(t) < k) < P(Kl(t)>k) = tk.

I'A
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Hence

(3.6) p*(t) - tk < pk*(t) <.p*(t) k=l, 2, .. , O<t<l.

For the problem of finding (3.4), the conditional success proba-

bility for stopping at a particular arrival time, say u, given a(u),

is
kIku~l{z i(u).:t, i<j; Z i(u)=u}

j=l 1j

if u > t;, zero otherwise. Since this is not a function only of u

and the relative rank at u of the current arrival, the standard results

of Mucci (1973a and b), Gianini and Samuels (1976) and Lorenzen (1977)

do not apply. Nevertheless, identical arguments lead to the following

system of differential equations:

(3.7a) dtk*(t) =t[kPk*(t) t- I t }]
I max{p.*(t), t}

dt Pk[k~k*t) -j=l
k=, 2, ...,; O<t<l

with the boundary conditions

(3.7b) p*l) O

This formula is strongly suggested by letting the arrival times in

the finite problem be {k/(m+n): k=l, 2, ... , m+n} and rewriting (2.6a) as

Pk*(i;m+n) - Pk*(i-l;m+n) -I
1/(m+n) = (i/(m+n)] l[kPk*(i; m+n)

k
- I max{P *(i; m+n), (i)./(m+n)I}.
j=l

From the form of (3.7) it follows that pk*(t) is attained by the

stopping rule
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(3.8) k*(t) = min{Ui>t: for some r<k,Z(Ui)<t for j<r,

Zr(U i) = Ui, and Uir>_pPr*(Ui)}

= (undefined) if no such Ui;

also

(3.9) T*(t) = limk Tk*(t).

Just as in the finite problem, a close examination of (3.7) leads to

explicit expressions for these optimal rules. The bonus here is that

the solution to (3.7) itself is also obtained. Making the change of

variables

gk M) = t-k pk*(t)

transforms (3.7) to

(3.10a) gk'(t) - t- (k+l3)maxg(t), 1}
j=l k=1, 2, ...; O<t<l

(3.10b) gkl) O

Thus the gk(.)'s are strictly decreasing and unbounded in (0, 1) so

one can define

(3.11) Sk*: gk(sk*) = k, 2, ... .

From (3.10) it is clear that for each t in (0, 1), gk(t) is increasing

in k; hence so are the sk*'s- Now, on [sk*, 1], (3.10) is simply

gk()= - ' t~'j

j=l

gk(1)= 0.

Hence
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(3.12) gk(t) = lin tj + I - (t3i-l)I kSl
J-1

Thus a complete description of the optimal stopping rules T*(t) can

be summnarized by

Proposition 3.1. In the infinite problem, there is a single

increasing sequence {sk*: W1, 2, .. .) such that, for any t in [0,1).

(3.13) r*(t) = min {Ui>t: for same r, Z.(U.i)<t for j<r, Z r(U) =

= (undefined) if no such U.i

The sequence {s k*1 is given by

(3.14a) s1 I =

k-1I _
(3.14b) Oin s k*l + I iIEUsk *) -1] = I k=2, 3.. .

j= 1

Corollary: For any t E (0,1) and k = 1, 2, ... the value

Pk (t) is attained Py (3.13) with sr* replaced y one for each r > k.

Same values of sk*are given in Table I together with the upper

and lower bounds provided by the following

Proposition 3.2. For each W=, 2,

(3.15) 1- k1l < Sk*< (1/2)l/

Proof: On the one hand, Pk*(Sk*) =(s k*)k. On the other hand,

taking t -x Sk* in (3.4),

(3.16) P(K 1(s k*) <k+l <K 2(sk*)) .1 Pk*(sk*) .1P*(K(sk*) _k).
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The second inequality is immediate; the first holds because the first

probability is smaller than the success probability for the rule

"select the first post-sk* arrival with relative rank < k". The left

and right sides of (3.16) are just k(l-sk*)(Sk*)k and l-(sk*)k respec-

tively. The result then follows by substitution. 0

Remark: The bounds in (3.15) are the limits obtained by dividing

the left and right sides of (2.12) by m+n and letting m+n - -.

As for the optimal probabilities, pk*(t), these can be obtained

iteratively from (3.10) and (3.11) since (3.10) is given by (3.12)

on [sk*,l) and can be transformed to

k-1(3.17) At (t gk(t)) = - I t " ( k j ) max{gj (t 1} Itk>l }

j=1

on (0, Sk*f. While one could certainly contemplate numerical evalu-

ation of the pk*(t)'s via (3.17), this is unnecessary, for we have --

by indirect means-- arrived at an explicit expression for the solution

to (3.7), namely the following:

Theorem 3.1. Let

(3.18a) r*(t) = max{j: s *<t}

= 0 if t<sl* O<t<l

(3.18b) rk*(t) = min (r*(t),k) k=l, 2,

Then p*(t) = limk-,UPk *(t) where (with r~rk*(t))

ia
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(3.19) pk*(t) = tr[ll ti I{r>1 } + j 1 (t0-l) 1(r>21
j=l

+ I tihA*(s I O)t<l,

j=r J

and

(3.20a) ho*(se*) =

(3.20b) hk*(Sk+l) = kl1[(sk 1*)k 1 ] - (l-Sk+1*)

k=, 2,

Remark: From the first inequality of (3.15) we conclude that

hk*(Sk+l*) < (e-l)/k <2k

and hence

p*(t) = tJh.*(s+l < 2tK+I/K(l-t)

j=K+l
K=l, 2,

O<t<l.

This inequality facilitates computation of p*(t) to any desired degree

of accuracy and was used in preparing Table 3.

It is straightforward to verify that (3.19) is a solution to

(3.7) which, strictly speaking, proves the theorem. But, without

some indication of how (3.19) might be deduced directly from (3.7), this

is hardly satisfactory. And we know of no such deductive method.

Our method of obtaining (3.19) begins by considering the class of

all families of stopping rules of the form

(3.21) T(t; s) = min (Ui>t: Z (Ui)<t for j<r, Zr(Ui) Ui>sr }

= (undefined) if no such Ui

where s = (sI, s2, .) is any sequence with
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(3.22) 0 < s, <_s 2 < ...<.

The optimal stopping rules are of this form; namely

T*(t) =T(t; s*)

Tk*(t) - T(t; s*)

where

s*= (S1* s2*,

s* = (sl* ..., Sk*, I, ...

For any s satisfying (3.22), denote

S = (s, ,  sk' 1,,...)

and also

(3.23) r(t; s) = sup {j: sj<t) I t>Sl)

= if sup Sk<_t

(3.24a) p(t; s) = P(T(t; s) = Tl(t)),

(3.24b) p~;s ~;S)

Then it can be shown that on (0, sup s - {s 1, with r E r(t; Sk),

(3.25) t Pk(t ; _)=t k Pk(t; _ {r>ll
j=l

k
- I p.(t; s) l~r<k} ]

j=rJ&I J

kW, 2,

which has a unique system of continuous solutions satisfying the boun-

dary conditions Pk(Sup Sk; s) = 0. That solution is given by the

following :

Theorem 3.2. For any s satisfying (3.22) and for t < sup s k ,

-. k j - . .. _' .. .. . .. .. . . . . .. . . .... - -. .- , .,,.--- - ., -.. . . ... ' - . ,,K oL . . . " , 
•
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(3.26) p(t; s) = tr lln tlI{r>l)+ jl J_(t l)2]

+ I t k hk(kl

k=r k(sk+1)

where r r(t; s) < - and

(3.27a) h0(s) I S Iin sj

(3.27b) hk(sk+l) kk1)]k- k
(l-Sk+l){in Sk+1 + k j-1[iSk+l)'J-l]}

jul

k--, 2,...

In particular Pk(t; s) is given by the right side of (3.28) with

r = r(t; Sk).

As with (3.7) and (3.19), (3.25) can be verified in a straight-

forward manner for Pk(t; s) as given above, but the latter cannot be

directly deduced from the former. A detailed proof of Theorem 3.2

without using (3.25) is deferred to section 5, while the relationship

of Theorem 3.1 to Theorem 3.2 will be presented here.

First, the two theorems are consistent because, for each k,

hk(sk+l*) = hk*(sk+l*) and hk(1) = 0; hence Pk(t; *) = pk*(t).

Second, Theorem 3.2 has the

Corollary; For each t in (0,1), p(t; s) and {Pk(t; s), kW, 2, ...,}

are all maximized by s-- s_.

Remark: This corollary states only that T(t; s*) is optimal in

the subclass of all rules of the form (3.21). Its optimality in

the class of all stopping rules is asserted by Proposition 3.1. Thus

it is the combination of two methods which yields the solution to the
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infinite problem. One is the so-called "method of backward induc-

tion" which leads to (3.7); the other is the probabilistic "conditioning"

argument used in section 5.

Proof of Corollary: Strictly speaking, no proof is needed since

the corollary follows immediately from Proposition 3.1 and its corol-

lary. So we shall merely indicate briefly how it follows directly from

(3.26) and (3.27). There are two key facts to be checked. First ,

each hk(x) is concave in (0,1) and maximized at s,+l*, so

r(t; s') = r(t; s) & 0 < (s' k-sk*)/(sk-sk *) 1

k=l, 2,.

p(t; s') > p(t; S)

Second, if s and s' are such that sk = sk' whenever sk > t or sk' > t,

then

p(t; I') - p(t; S)

From just these two facts it follows that any s can be replaced by

s1 without decreasing p(t; S). EJ

We return now to Theorem 3.1 to investigate the optimal best choice

probability p*(t) for t = 0 and as t 1 1. The former case is

immediate:

p*(O) = h0*(s*) = e-

this is the familiar limiting no-information value. As t - 1 one would

expect p*(t) to converge to the limiting full-information value v*.

The following expression for v* was obtained by Samuels (1980):

(3.28) v* e-c + (eC-1) fT xle'CXdx



18

where c .804352 satisfies

(3.29) 1 cj/j!j I .
j=1

Frn the formula

f7X-1 e-CX dx = hog cl -y I (-c)3/jlj

,j=1

where y is Euler's constant (y qz .577216), v* can easily be evaluated.

The value is v* F- .580164, in agreement with that in Gilbert and

Mosteller (1966).

Theorem 3.3. The following limits hold:

(3.30) limt-1' p*(t) = V

(3.32) hin t1+ (l-t)r*(t) = c

where v* and c are given X (3.28) and (3.29) respectively.

Proof of Theorem: To establish (3.31), write

(3.33) k * = k/(k+c k)

and use the identity

k -1 -j k .

jul j I I1

with x s Sk* It follows from (3.14b) that

k (c 1 k

+In (1+k ck) I.
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Now, by the left side of (3.15), ck < k/(k-l),so the second and third

terms on the left side go to zero with k. Thus,

k
limk-m j-l J'l(j)(Ck)jk'j = 1.

Writing the sum as

j=l i=l

the dominated convergence t".orem can be employed to show that for any

convergent subsequence ck. - c, c must satisfy (3.29). Thus ck - c

and, since sk* 1 by (3.5), (3.31) holds.

Formula (3.32) is obtained from (3.31) by noting that r*(t) = k

if sk* < t < S*k+ I, and by using (3.33), which gives

Sk* < t < Sk+1  t Ck+l - (1-t) < (-t)k <t ck.

Note that (3.32) implies

(3.34) lim ttl t 
r* (t ) = •"c

Also, substituting (3.33) into (3.20b) gives

(3.35) h (s k I (l C kk (Ck k-I 1 eC-cl)

k

Thus,

(3.36)t t h k*(s* ) (eCcl-) k Itk

k-r*(t) k K' k-r(t
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The remainder of the proof is based on the following two calculus

lemrnas which are straightforward to prove.

Lemna 1: If n(t) - as t increases to 1, then

k k'- (t) x'tXdx - 17 y'Itn(t)YdY;
k >n (t) nt

hence if n(t) In t- - b as t - 1, then

k>n(t) kltk 1 xlebXdx

Lenma 2: If n(t) + as t increases to 1 but n(t) lnt= 0(1),

then

l<_ ~k!_n) l(t-k'l) ', fn ( t ) x - l ( t ' x -I ) dx "

Hence, if n(t) Int-+).- b as t -1 , then

I~~nt k-l(t-k-l) " fb Y-li(t-n(t)y/b_l)dy
Iknt b/n(t)

fb y-l(ey-l)dy _ __ .
0 ~j=l !

From (3.34) observe that r*(t) and r*(t) - 1 satisfy all of the

conditions on n(t) in both Lenmas, with b = c. Thus from Lenma 2,

with n(t) = r*(t) - 1, and from (3.34)

tr.(t) r*(t)-I j- l(tj-l) e-c  cJ/j!j = e-c
j=l j=1

and from Lemma 1 with n(t) a r*(t), together with (3.34),

jar (t) tjhj*(Sj+,*) (eCc'l-) fT xle'CXdx"
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The only remaining term in (3.19) is tr*(t) uln tj which goes to zero.

This completes the proof of Theorem 3.3. c

4. ASYMPTOTIC RESULTS

The following results will be proved in this section:

Theorem 4.1. For each fixed n, P*(m,n) increases to v*(n) as

Theorem 4.2. As m + n o,

IP*(m,n) - p*(m/(m+n))j = 0 ((m+n)i log(m+n))

uniformly in e < m/(m+n) < 1 - E for any E > 0.

Corollary. As m + n -,

(m+n)- 1 Sk*(m+n) - ksk, 2,

Since v*(n) is the full-information success probability, Theorem

4.1 confirms the fact that a large prior sample size provides enough

information to enable one to choose the best of a current crop of size

n with probability nearly as high as if sampling from a known contin-

uous distribution.

Theorem 4.2 and its corollary show that the infinite problem

success probabilities and optimal stopping rules can serve as

approximations to the finite problem ones. Also, it can easily be

checked that the finite-problem policies Sk( m+n) = [(m+n)sk*] are

asymptotically optimal.

Proof of Theorem 4.1. Let (Zi: ll_<m+n} be independent random

variables each uniform on (0,1); fXi: 1<i<m+n} be the ranks of the
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Zt s. {Yi: l<i<m+nl be the relative ranks, and, if m>l, {Yi: 2<i<m+n)

be the relative ranks of {Zi: 2<i<m+n). Let J.(m+n) be the class of

all stopping rules adapted to {Y I.

Each Yi' is a function of {Y.: j<i), so .(m+n) contains all

stopping rules adapted to {Yi'}. But the distribution of

{Yi :2<i<m+n} is the same as that of {Yi: l<i<(m-l)+n}. Thus the

optimal success probability in this subclass of .7(m+n) -- when m>l -- is

precisely P*(m-l,n), which is necessarily no greater than P*(m,n). This

proves monotonicity of P*(m,n) in m.

Since each Yi is a function of {Z.: j<i}, it follows that

V * > P*(m,n) for each m and n. Hence, to complete the proof, it

suffices to show that lim infm P*(m,n) >vn* This is accomplished

by exhibiting a sequence of stopping rules, tm, for which P(Tm=,m*) M 1

where xm* is the optimal rule based on {Zi: li<m+n} which, as Gilbert

and Mosteller (1966) showed, is of the form

m n* = min i: Zm+i .bn.i}.

We can then let

'm mn {i: mC1 Ym+i b

which is satisfactory because, as m I , {m 1 Ym+i: ldi<n} converyJs

in distribution to {Zm+i:l<i n). 0

The proof of Theorem 4.2 is based on the following propositions:

Proposition 4.1: For any t > m/(m+n),

P*(m,n) 2 p*(m/(m+n)) - Cl - E(X/n)I 0<01 {X~cn}

-!
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where X is a binomial random variable with parameters m+n and l-t.

Proposition 4.2: For any t < m/(m+n),

p*(m/(m+n)) > E(n/Y)I y>n)P*(mn)

where Y is a negative binomial random variable with parameters m+l

and t (i.e.,Y has the distribution of the number of failures before

the (m+l)-th success).

Before proving these two propositions let us show how the theorem

follows from them by a slight adaptation of a familiar large deviation

result for binomial distributions.

The method in Feller (1968; p. 193) yields this

Lemma: If Z is binomial (N,p), then, for any c > 0,

sup <p<l E P(jZ-EZj > Ni log N) = O(N'/log N).

To use this lemma with Proposition 4.1, choose t = m/(m+n)+ (m+n) 21og(m+n)

so EX = n - (m+n)2 log(m+n). Then
E(X/n)I [ -l

{X<n }  [l-2n> (m+n)2log(m+n)] - P(n-2(m+n)xlog(m+n)cXcn)
l121m- I

S[1-2(lmn- )(m+n)-2log(m+n)] • P(JX-EXJ<m+n log(m+n)).

Now (lI+mn) is uniformly bounded if, for some e > 0, c < m/(m+n) < I - c;

so, for t as given above,

(4.1) sup <m/(m+n)<1_c [l-E(X/n)l {X<n = 0((m+n)'1log(m+n)).

The application of the lemma to Proposition 4.2 is similar. Choose

t = m/(m+n) - (m+n)"* log(m+n). Then for any c > 0
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E(n/Y)I{y>n} > (1-2 cn'l(m+n) log(m+n)] • P(n<Y<n+2c(m+n) log(m+n))

= [1-2c(l+mn' )(m+n)2 log(m+n)- [P(V>m)-P(U>m)]

where U and V are binomial random variables with parameter m+n and t,

and the integer part of [m+n+2c(m+n) log(m+n)] and t, respectively. Then

EU = m - (m+n)2 log(m+n), and, taking c = t" , EV = m+(m+n)2 log(m+n)-6

where 6 < 1 and can be neglected. Hence

P(V>m) - P(U>m) = P(V-EV>-(m+n) log(m+n)) - P(U-EU>(m+n) log(m+n)).

Since c(l+mn "1 ) is uniformly bounded if, for some c > GE < m/(m+n)<l-e,

conclude that

(4.2) supc<m/(m+n)<l.c [1-E(n/Y)I {y>n = O((m+n) - log(m+n))

The theorem now follows immediately from (4.1), (4.2), and the

two propositions.

Proof of Proposition 4.1: Modify the infinite model of section 3

by augmenting the o-fields 3t to 3t v30 where 30 is generated by the

order statistics, U(1)' U(2), ... , U(m+n) of U1, U2, ... , Um+n , the

arrival times of the m+n best. Denote by Y the augmented class of

stopping rules which includes all those adopted to{t v 30}. Letting

I = min (i: Ui = U(0) for some j > m),

U1 is the arrival time of the best of the last n to arrive among the

m+n best.

Clearly

sup P(TZU I) = P*(m,n)
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which is attained by the rule, say r(m,n), which corresponds to

T*(m,n). Hence, in particular, for any t > m/(m+n)

(4.3) P*(m,n) = P(r(m,n)=U I)

>P(T*(t)=U I)

P(T*(t)=Zl(t)) - P(Z(t)(UI)

a p*(t) - P(zI(t)U I)

> p*(m/(m+n)) - P(Zl(t) Ul).

Let X = maxij: U(m+n-j) t. Then X has a binomial distribution

with parameters m+n and l-t,

(4.4) {X < n & UI > tI c (Zl(t) = UIJ,

and

(4.5) P(X < n & UI > t) = E(X/n)I{x<n}.

The proposition follows immediately from (4.3), (4.4), and (4.5). c3

Proof of Proposition 4.2: Returning to the unaugmented infinite

model of section 3, for fixed m, n, and t let Y be the number of

post-t arrivals which are better than the (m+l)-th best pre-t arrival.

Then Y has the negative binomial distribution with parameters m+l and t.

Now let R, R2, ..., Ry denote the successive relative ranks of

these Y arrivals. On the event {Y>n), R,, ..., Rn have the same joint

distribution as the last n relative ranks in the finite (m,n) problem;

namely,they are independent with RI uniformly distributed on {l, 2, ..., m+i).

Moreover the R's are "observable", so there is a stopping rule T in .

which on Y>n is based on R1 , ..., Rn in exactly the same way as the

optimal (m,n)-pollcy is based on the last n relative ranks in the

(m,n)-problem.
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Note that on the event {Y>n) the best of the first n of the Y

arrivals is the best post-t arrival if and only if the best of all Y

is among the first n of them. Hence, if t_<n/(m+n),

(4.6) p*(m/(m+n)) > p*(t) > P(T selects best post-t arrival)

> P(Y>n & best of all Y is among first n) P(T selects best of

first n IY>n & best of Y is among first n).

The first factor on the right side of (4.6) is E(n/Y)I{y>n because

whatever the value of Y the ranks of the Y arrivals relative to each

other, are just a random permutation of (, ..., Y). The second factor

is P*(m,n) because, given Y>n, the distribution of Rl, ... I Rn does

not depend on whether or not the best of all Y arrivals is among the

first n. Substituting these values onto (4.6) completes the proof. D

5. PROOF OF THEOREM 3.2

Let t E (0,1) and s = (sl, s 2' ... , with O <s I ..- , be

fixed. The abbreviations

T (t; S)

Ki  Ki (t)

Ti  TT(t)

r r(t; s)

will be used throughout the proof.

Begin by partitioning the event {T lII according to the value of the

smallest I for which t < TI < T,; so

(5.1) P(TzT 1 ) I i P(T=T 1 & T<Tlcmin t T )
i=2 I (j~i j

$Mil
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Note that on the event {Tl--Min 3< T I the relative rank of the

arrival at Ti is K1-(i-l). It can then be shown that on (Ti<TI<minl<j< i T.}

(5.2) Ti > SKi_(i-l) T <_T i so T Ti

Ti < S Ki_(i-) 2 T > T1or T undefined.

The first implication is immediate; the second is true because (a)

T Ti by definition of T; (b) T / Ti since

Tk < Ti & Tk = min i<k T k k > i

K k- (k-1) L Ki-(i-l)

so

SKk_ (k1) >_ SKi_(i.1) T Ti > T k

and (c) T 4 (Ti,T I) since on {Ti  T 1 < mini<j< i TI there is no k for

which both Tk = mint<k TI and Tk E (TiTI).

From (5.2) it follows immediately that

(5.3) IT 
= Tl & Ti<TI<minl<jiT I =

{Ti<T <min<J<iT & TI>SKI & T <SKi.(i_1),

and, from the independence of {Ti} and {Ki},

(5.4) P(T<TI<mlnI<j<iTj & TI>sK & Ti <SK,.(il))

i P(T JT<min T ) 1 P(K -kK -i-l+z)P(Z )S1 Ws
i=2 i icj<l J kzl tak I 0k
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where Z(1 ) and Z(2 ) denote the smallest and second smallest order

statistics from a random sample ZV, Z2, ... , Zi , IID, each uniform on

(t,l). Now it is straightforward to evaluate the terms on the right

side of (5.4). They are

(5.5) P(Ti<Tl<minlj<iT i)  /(-1);

(5.6) P(K =kK -il+t) = P(K =kK -K =i-l+t-k) = (i-2+k )tZ' (I-t)i

and

(5.7) P(Z(1)<s & Z(2)>sk) =

0 if t > sI since Z(1) > t

1-(1-s d)i/(1-t) i = l-P(Z i>s IJ=I, 2, .. ,i) if sk < t < s.

(l-t) 1{i (sk-t) (l-sk) i-I +(lS)- (s) i }

= P(exactly one of Z19 ..., Zn E (t.sk) & all others > sk)

+ P(sk < minlj..isZY<s ) if t < Sk*

Substituting (5.5), (5.6), and (5.7) into (5.4), then (5.4) into

(5.1) using the identity (5.3), gives

P(x-T1) = A(r) + B(r) + C(r) + D(r)

where
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rA(r)= i.2li1. -1 0 2+ k1
(i II ( i-_tr

1=2 k=l r ,r4l -r

B(r) --I t I (I-I)I r i-2+k-) )i

1=2 £1 i=2 k {r>11

o = ()(sk-t)(1r s k) +( s k)i
k=r+l 1=2 =0 0 0

D(r) I t - k i i-2-I) (1sk)
k=r+l i=2 L=r+l

Now from the identity

(-2 J) :(1u)i 1 1=2, 3, ... ; O<u<1
j =O

B, C, and D are easily simplified to

C(r) = i t (l-s )
k=r+l

B(r) + D(r) = k [ hk-l(Sk)-(-sk)]
k=r+l

with hk(Sk+1) as defined in (3.27). Then

B(r) + C(r) + D(r) = - t3h(sj+l)

j=r j i

so, from (3.26), to complete the proof it must be shown that A(r) B E(r)

where r- 1 -

E(r) . tr[lIn tIl{r~lj + jrl- I (t'Jl)l{r>2}]"

This is trivally true for r - 0 and can be proved by induction on

r for r > I by verifying the following equalities:

_ __ . , . ... . -...
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A(l) - E(l)

E(r+l) = tiE(r) + r I (lt)r]  r=l, 2,.

(5.8) A(r+l) = t[A(r) + u(r)] r=l, 2,

-- where 
- j 1u r+ i-2+ tJ-lt)i

i=2 j=r+l

-- and

u(1) = 1-t

u(r-l) - u(r) = (r-l)-1(l-t) - r 1 (1t)r r=1, 2,...

Hence

u(r) = r(1 (lt)r rl, 2,

Substitute this into (5.8) to conclude that A(r) =- E(r) and complete

the proof. o

It should be noted that the common value A(r) = E(r) is in fact

just E X I {X>11 where X is the number of failures before the r-th

success in independent Bernoulli trials with success probability t.

This can easily be seen by verifying that

,i~~~ ~ wr - -1j+r.-1) tr(1.t)j

Jul

satisfies

w(1) = A(l) - E(l)

and

w(r+l) - t[w(r) + r'l(l-t)r]. r=l, 2,

(See Feller [1968; p. 241 problem 33 and solution on p. 493] for a related

result.)
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TABLE 1

Parameters of Optimal Policies for the Infinite Problem

Lower Bound Exact Value Upper Boundk(1-k ")  Sk *( 5 /

1 0 .36788 .500
2 .500 .64200 .707
3 .667 .75181 .794
4 .750 .81018 .841
5 .800 .84636 .871
6 .833 .87098 .891
7 .857 .88880 .906
8 .875 .90230 .917
9 .889 .91287 .926
10 .900 .92139 .933
11 .909 .92838 .939
12 .917 .93424 .944
13 .923 .93921 .948
14 .929 .94348 .952
15 .933 .94719 .955
16 .938 .95044 .958
17 .941 .95332 .960
18 .944 .95588 .962
19 .947 .95817 .964
20 .950 .96024 .966
21 .952 .96211 .968
22 .955 .96382 .969
23 .957 .96537 .970
24 .958 .96680 .972
25 .960 .96812 .973

ML2
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TABLE 2

Parameters Sk *(m+n) and Estimates (m+n)sk* (in parenthesis)

of Optimal Rules

n1+n

k 4 5 6 10 15 20 25 30

1 2(1.5) 3(1.8) 3(2.6) 4(3.7) 6.( 5.5) 8( 7.4) 10( 9.2) 12(11.0)

2 5(4.5) 7(6.4) ll( 9.6) 14(12.8) 17(16.1) 20(19.3)

3 12(11.3) 16(15.0) 20(18.8) 24(22.6)

4 13(12.2) 17(16.2) 21(20.3) 25(24.3)

5 18(16.9) 22(21.2) 26(25.4)

6 18(17.4) 23(21.8) 27(26.1)

7 23(22.2) 28(26.7)

8 28(27.1)

9 28(27.4)
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TABLE 3

Optimal Success Probabilities, P*(m,n), and Limits,
p*(t), for Fixed t=m/(m+n)

m n min(mn)
t m 2 4 6 8 10 14 20 24 30 p*(t)

I6 .439 .421 .416 .413 .412 .410 .409 .405

I
.453 .435 .428 .424 .422 .420 .418 .418 .414

.486 .456 .446 .442 .439 .436 .434 .433 .432 .428

.544 .497 .481 .475 .471 .466 .463 .461 .460 .455

2
5 .600 .532 .514 .505 .499 .493 .488 .487 .485 .478

1
.667 .583 .554 .541 .533 .524 .517 .515 .512 .502

3
5 .700 .593 .569 .557 .549 .540 .534 .532 .529 .520

2
3 .700 .610 .581 .569 .561 .553 .547 .554 .542 .533

3
4 .714 .621 .594 .582 .574 .566 .560 .557 .555 .546

4
5 .722 .628 .602 .589 .581 .573 .567 .565 .553

5
.727 .633 .606 .594 .587 .578 .572 .558
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TABLE 4

Optimal Success Probabilities, P*(m,n), and Limits, vn for Fixed n

m

n 2 3 5 10 20 50 v n

2 .667 .700 .714 .727 .738 .745 .750

3 .600 .608 .631 .652 .667 .677 .684

5 .505 .540 .562 .593 .613 .627 .639

10 .439 .455 .487 .533 .561 .587 .609

20 .404 .413 .431 .471 .517 .554 .594

50 .382 .386 .394 .412 .446 .508 .586

t
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